Сервіси

9 клас – математика

НАВЧАЛЬНА ПРОГРАМА

З МАТЕМАТИКИ

НА БАЗІ ОСНОВНОЇ ШКОЛИ

 

Абітурієнт повинен:

Впевнено володіти обчислювальними навичками при виконанні дій з раціональними числами (натуральними, цілими, звичайними, десятковими дробами).

Уміти виконувати тотожні перетворення основних алгебраїчних виразів (цілих, дробово-раціональних виразів, виразів які містять степені і корені), тригонометричних виразів.

Уміти розв’язувати рівняння, нерівності та їх системи першого і другого степенів і ті, що зводяться до них, а також розв’язувати задачі способом складання рівнянь та їх систем.

Уміти будувати графіки функцій, передбачених програмою.

Уміти зображати геометричні фігури і виконувати найпростіші побудови на площині.

Володіти навичками вимірювання і обчислення довжин, кутів і площ, які використовуються для розв’язання різних практичних задач.

 

МАТЕМАТИКА

Тема 1. НАТУРАЛЬНІ ЧИСЛА. ГЕОМЕТРИЧНІ ФIГУРИ І ВЕЛИЧИНИ

Натуральні числа. Число нуль. Відрізок. Вимірювання і побудова відрізка. Промінь, пряма. Координатний промінь.

Порівняння натуральних чисел. Додавання і віднімання натуральних чисел. Властивості додавання.

Кут. Вимірювання і побудова кутів. Транспортир. Шкали. Види кутів. Бісектриса кута.

Множення натуральних чисел. Властивості множення. Квадрат і куб числа.

Ділення натуральних чисел. Ділення з остачею.

Числові вирази. Буквені вирази та їх значення. Формули.

Рівняння. Розв’язування рівнянь.

Розв’язування текстових задач, зокрема комбінаторних.

Прямокутник, квадрат та їх периметри.

Трикутник, його периметр. Види трикутників.

Рівність фігур. Величина.

Площа прямокутника. Площа квадрата.

Прямокутний паралелепіпед, його виміри. Куб. Формули об’ємів прямокутного паралелепіпеда і куба

Тема 2. ДРОБОВІ ЧИСЛА

Дробові числа. Звичайні дроби. Правильні та неправильні дроби. Мішані числа.

Порівняння звичайних дробів з однаковими знаменниками.

Додавання і віднімання звичайних дробів з однаковими знаменниками.

Десятковий дріб. Запис і читання десяткових дробів. Порівняння і округлення десяткових дробів.

Додавання, віднімання, множення і ділення десяткових дробів.

Відсотки. Знаходження відсотків від даного числа. Знаходження числа за його відсотками.

Масштаб.

Середнє арифметичне, його використання для розв’язування задач практичного змісту. Середнє значення величини.

Тема 3. ПОДІЛЬНІСТЬ ЧИСЕЛ

Дільники натурального числа. Ознаки подільності на 2, 3, 9, 5 і 10.

Прості та складені числа.

Розкладання чисел на прості множники.

Спільний дільник кількох чисел. Найбільший спільний дільник. Взаємно прості числа.

Спільне кратне кількох чисел. Найменше спільне кратне.

Тема 4. ЗВИЧАЙНІ ДРОБИ

Основна властивість дробу. Скорочення дробу. Найменший спільний знаменник. Зведення дробів до спільного знаменника.

Порівняння дробів.

Додавання, віднімання, множення і ділення звичайних дробів.

Знаходження дробу від числа і числа за його дробом.

Перетворення звичайних дробів у десяткові. Нескінченні періодичні десяткові дроби. Десяткове наближення звичайного дробу.

Розв’язування вправ на всі дії зі звичайними дробами.

Розв’язування текстових задач.

Тема 3. ВІДНОШЕННЯ І ПРОПОРЦІЇ

Відношення. Основна властивість відношення.

Пропорція. Основна властивість пропорції. Розв’язування рівнянь на основі властивості пропорції.

Випадкова подія. Імовірність випадкової події.

Відсоткове відношення двох чисел. Відсоткові розрахунки. Задачі економічного змісту.

Пряма пропорційна залежність. Задачі на пропорційний поділ.

Коло. Довжина кола. Круг. Площа круга. Круговий сектор. Стовпчасті та кругові діаграми.

Тема 4. РАЦІОНАЛЬНІ ЧИСЛА ТА ДІЇ НАД НИМИ

Додатні та від’ємні числа. Число 0.

Координатна пряма.

Протилежні числа. Модуль числа.

Цілі числа. Раціональні числа.

Порівняння раціональних чисел.

Додавання, віднімання, множення і ділення раціональних чисел.

Властивості додавання і множення раціональних чисел.

Розкриття дужок. Подібні доданки та їх зведення.

Рівняння. Основні властивості рівняння.

Перпендикулярні й паралельні прямі, їх побудова.

Координатна площина. Приклади графіків залежностей між величинами.

 

АЛГЕБРА

Тема 1. ЛІНІЙНІ РІВНЯННЯ З ОДНІЄЮ ЗМІННОЮ

Лінійні рівняння з однією змінною. Розв’язування лінійних рівнянь.

Розв’язування задач за допомогою лінійних рівнянь. Рівняння як математична модель задачі.

Тема 2. ЦІЛІ ВИРАЗИ

Вирази зі змінними. Цілі раціональні вирази. Числове значення виразу.

Тотожні вирази. Тотожність. Тотожні перетворення виразу. Доведення тотожностей.

Степінь з натуральним показником. Властивості степеня з натуральним показником.

Одночлен. Стандартний вигляд одночлена. Піднесення одночленів до степеня. Множення одночленів.

Многочлен. Подібні члени многочлена та їх зведення.

Додавання і віднімання многочленів.

Множення одночлена і многочлена; множення двох многочленів.

Розкладання многочленів на множники способом винесення спільного множника за дужки та способом групування.

Формули скороченого множення: квадрат двочлена, різниця квадратів, сума і різниця кубів.

Використання формул скороченого множення для розкладання многочленів на множники.

Тема 3. ФУНКЦІЇ

Функція. Область визначення і область значень функції. Способи задання функції. Графік функції.

Функція як математична модель реальних процесів.

Лінійна функція, її графік та властивості.

Тема 4. СИСТЕМИ ЛІНІЙНИХ РІВНЯНЬ З ДВОМА ЗМІННИМИ

Рівняння з двома змінними. Розв’язок рівняння з двома змінними.

Лінійне рівняння з двома змінними та його графік.

Система двох лінійних рівнянь з двома змінними та її розв’язок.

Розв’язування систем двох лінійних рівнянь з двома змінними: графічним способом; способом підстановки; способом додавання.

Розв’язування задач за допомогою систем лiнійних рівнянь.

Тема 5. РАЦІОНАЛЬНІ ВИРАЗИ

Дроби. Дробові вирази. Раціональні вирази. Допустимі значення змінних.

Основна властивість дробу.

Дії над дробами.

Тотожні перетворення раціональних виразів.

Раціональні рівняння. Рівносильні рівняння. Розв’язування раціональних рівнянь.

Степінь з цілим показником і його властивості. Стандартний вигляд числа.

Функція y=k/x , її графік і властивості.

Тема 6. КВАДРАТНІ КОРЕНІ. ДІЙСНІ ЧИСЛА

Функція y=x2 та її графік.

Квадратний корінь. Арифметичний квадратний корінь.

Рівняння x2=a.

Раціональні числа. Ірраціональні числа. Дійсні числа. Числові множини. Етапи розвитку числа.

Арифметичний квадратний корінь з добутку, дробу і степеня. Добуток і частка квадратних коренів.

Тотожність √a2=│a│.

Тотожні перетворення виразів, що містять квадратні корені.

Функція y=√x, її графік і властивості.

Тема 7. КВАДРАТНІ РІВНЯННЯ

Квадратні рівняння. Неповні квадратні рівняння, їх розв’язування.

Формула коренів квадратного рівняння.

Теорема Вієта.

Квадратний тричлен, його корені. Розкладання квадратного тричлена на лінійні множники.

Розв’язування рівнянь, які зводяться до квадратних.

Розв’язування задач за допомогою квадратних рівнянь та рівнянь, які зводяться до квадратних

Тема 8. НЕРІВНОСТІ

Числові нерівності. Основні властивості числових нерівностей.

Почленне додавання і множення нерівностей.

Застосування властивостей числових нерівностей для оцінювання значення виразу.

Нерівності зі змінними. Лінійні нерівності з однією змінною. Розв’язок нерівності.

Числові проміжки. Об’єднання та переріз числових проміжків.

Розв’язування лінійних нерівностей з однією змінною. Рівносильні нерівності.

Системи лінійних нерівностей з однією змінною, їх розв’язування.

Тема 9. КВАДРАТИЧНА ФУНКЦІЯ

Функції. Властивості функції: нулі функції, проміжки знакосталості, зростання і спадання функції.

Найпростіші перетворення графіків функцій.

Функція y=ax²+bx+c, a≠0, її графік і властивості.

Квадратна нерівність. Розв’язування квадратних нерівностей.

Розв’язування систем рівнянь другого степеня з двома змінними.

Розв’язування текстових задач за допомогою систем рівнянь.

Тема 10. ЕЛЕМЕНТИ ПРИКЛАДНОЇ МАТЕМАТИКИ

Математичне моделювання.

Відсоткові розрахунки. Формула складних відсотків.

Випадкова подія. Ймовірність випадкової події.

Статистичні дані. Способи подання даних. Частота. Середнє значення.

Тема 11. ЧИСЛОВІ ПОСЛІДОВНОСТІ

Числові послідовності. Арифметична прогресія, її властивості. Формула n-го члена арифметичної прогресії. Сума перших n членів арифметичної прогресії.

Геометрична прогресія, її властивості. Формула n-го члена геометричної прогресії. Сума перших n членів геометричної прогресії.

Нескінченна геометрична прогресія (q<1) та її сума.

Розв’язування вправ і задач на прогресії, в тому числі прикладного змісту.

 

 

ГЕОМЕТРІЯ

Тема 1. НАЙПРОСТІШІ ГЕОМЕТРИЧНІ ФIГУРИ ТА  ЇХ ВЛАСТИВОСТІ

Геометричні фігури. Точка, пряма, відрізок, промінь, кут та їх властивості. Вимірювання відрізків і кутів. Бісектриса кута. Відстань між двома точками.

Вимірювальні, креслярські та допоміжні інструменти, що використовуються в геометрії.

Тема 2. ВЗАЄМНЕ РОЗТАШУВАННЯ ПРЯМИХ НА ПЛОЩИНІ

Суміжні та вертикальні кути, їх властивості.

Паралельні та перпендикулярні прямі, їх властивості.

Перпендикуляр. Відстань від точки до прямої. Кут між двома прямими, що перетинаються.

Кути, утворені при перетині двох прямих січною. Ознаки паралельності прямих. Властивості кутів, утворених при перетині паралельних прямих січною.

Тема 3. ТРИКУТНИКИ

Трикутник і його елементи. Рівність геометричних фігур. Ознаки рівності трикутників.

Види трикутників. Рівнобедрений трикутник, його властивості та ознаки. Висота, бісектриса і медіана трикутника.

Ознаки рівності прямокутних трикутників. Властивості прямокутних трикутників.

Сума кутів трикутника. Зовнішній кут трикутника та його властивості.

Нерівність трикутника.

Тема 4. КОЛО І КРУГ. ГЕОМЕТРИЧНІ ПОБУДОВИ

Коло. Круг.

Дотична до кола, її властивість.

Коло, описане навколо трикутника.

Коло, вписане в трикутник.

Задача на побудову та її розв’язування.

Основні задачі на побудову:

— побудова трикутника за трьома сторонами;

— побудова кута, що дорівнює даному;

— побудова бісектриси даного кута;

— поділ даного відрізка навпіл;

— побудова прямої, яка перпендикулярна до даної прямої.

Геометричне місце точок.

Метод геометричних місць.

Тема 5. ЧОТИРИКУТНИКИ

Чотирикутник, його елементи. Паралелограм та його властивості. Ознаки паралелограма. Прямокутник, ромб, квадрат та їх властивості. Трапеція.

Вписані та описані чотирикутники. Вписані та центральні кути.

Теорема Фалеса. Середня лінія трикутника, її властивості.

Середня лінія трапеції, її властивості.

Тема 6. ПОДІБНІСТЬ ТРИКУТНИКІВ

Узагальнена теорема Фалеса.

Подібні трикутники. Ознаки подібності трикутників. Застосування подібності трикутників:

— середні пропорційні відрізки в прямокутномутрикутнику;

— властивість бісектриси трикутника.

Тема 7. МНОГОКУТНИКИ. ПЛОЩІ МНОГОКУТНИКІВ

Многокутник та його елементи.

Опуклі й неопуклі многокутники.

Сума кутів опуклого многокутника.

Вписані й описані многокутники.

Поняття площі многокутника. Основні властивості площ.

Площа прямокутника, паралелограма, трикутника. Площа трапеції.

Тема 8. РОЗВ’ЯЗУВАННЯ ПРЯМОКУТНИХ ТРИКУТНИКІВ

Теорема Піфагора.

Перпендикуляр і похила, їх властивості.

Синус, косинус і тангенс гострого кута прямокутного трикутника.

Співвідношення між сторонами і кутами прямокутного трикутника.

Значення синуса, косинуса і тангенса деяких кутів.

Розв’язування прямокутних трикутників. Прикладні задачі.

Тема 9. РОЗВ’ЯЗУВАННЯ ТРИКУТНИКІВ

Синус, косинус, тангенс кутів від 0° до 180°.

Тотожності:

sin2a + cos2a = 1; sin (180° – a) = sin a;

cos (180° – a) = – cos a;

sin (90° – a) = cos a; cos (90° – a) = sin a.

Теореми косинусів і синусів.

Розв’язування трикутників. Прикладні задачі.

Формули для знаходження площі трикутника.

Тема 10. ПРАВИЛЬНІ МНОГОКУТНИКИ

Правильні многокутники. Формули радіусів вписаних і описаних кіл правильних многокутників.

Побудова правильних многокутників.

Довжина кола. Довжина дуги кола. Площа круга та його частин.

Тема 11. ДЕКАРТОВІ КООРДИНАТИ НА ПЛОЩИНІ

Прямокутна система координат на площині. Координати середини відрізка. Відстань між двома точками із заданими координатами. Рівняння кола і прямої.

Тема 12. ГЕОМЕТРИЧНІ ПЕРЕТВОРЕННЯ

Переміщення та його властивості.

Симетрія відносно точки і прямої, поворот, паралельне перенесення. Рівність фігур.

Перетворення подібності та його властивості. Гомотетія. Подібність фігур. Площі подібних фігур.

Вектор. Модуль і напрям вектора. Рівність векторів. Координати вектора. Додавання і віднімання векторів. Множення вектора на число. Колінеарні вектори.

Скалярний добуток векторів

Тема 13. ПОЧАТКОВІ ВІДОМОСТІ З СТЕРЕОМЕТРІЇ

Взаємне розташування прямих у просторі. Взаємне розташування площин. Взаємне розташування прямої та площини. Перпендикуляр до площини.

Пряма призма. Піраміда. Площа поверхні та об’єм призми і піраміди.

Циліндр. Конус. Куля. Площі поверхонь і об’єми циліндра, конуса і кулі.

Розв’язування задач на обчислення площ поверхонь і об’ємів, у тому числі прикладного характеру.

Голова предметної комісії

Борозенець Н.С.